News

Plants grown in Apollo lunar regolith present stress-associated transcriptomes that inform prospects for lunar exploration


  • NASA. NASA’s Lunar Exploration Program Overview. The Artimis Plan, 1–74, https://www.nasa.gov/sites/default/files/atoms/files/artemis_plan-20200921.pdf (2020).

  • Neal, C. R. A return to the moon is crucial. Sci. Am. 315, 8 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • NASA. Artemis III Science Definition Report NASA/SP-20205009602, 1–188, https://www.nasa.gov/sites/default/files/atoms/files/artemis-iii-science-definition-report-12042020c.pdf (2020).

  • Wheeler, R. M. Plants for human life support in space: from Myers to Mars. Gravit. Space Biol. 23, 25–35 (2010).


    Google Scholar
     

  • Hossner, L. R., Ming, D. W., Henninger, D. L. & Allen, E. R. Lunar outpost agriculture. Endeavour 15, 79–85 (1991).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Salisbury, F. B. Lunar farming: achieving maximum yield for the exploration of space. HortScience 26, 827–833 (1991).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ming, D. W. & Henninger, D. L. Use of lunar regolith as a substrate for plant growth. Adv. Space Res. 14, 435–443 (1994).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Whitney, G. In Lunar Base Agriculture: Soils for Plant Growth. (eds Ming, D. W. & Henninger, D. L.) (ASA, CSSA, SSSA, 1989).

  • Wolff, S. A., Palma, C. F., Marcelis, L., Kittang Jost, A. I. & van Delden, S. H. Testing new concepts for crop cultivation in space: effects of rooting volume and nitrogen availability. Life (Basel) 8, 45 (2018).

  • Zabel, P., Zeidler, C., Vrakking, V., Dorn, M. & Schubert, D. Biomass production of the EDEN ISS space greenhouse in antarctica during the 2018 experiment phase. Front. Plant Sci. 11, 656 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barker, R., Lombardino, J., Rasmussen, K. & Gilroy, S. Test of arabidopsis space transcriptome: a discovery environment to explore multiple plant biology spaceflight experiments. Front. Plant Sci. 11, 147 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paul, A.-L. et al. Genetic dissection of the Arabidopsis spaceflight transcriptome: are some responses dispensable for the physiological adaptation of plants to spaceflight? PLoS One 12, e0180186 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paul, A.-L., Zupanska, A. K., Schultz, E. R. & Ferl, R. J. Organ-specific remodeling of the Arabidopsis transcriptome in response to spaceflight. BMC Plant Biol. 13, 112 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villacampa, A. et al. From spaceflight to mars g-levels: adaptive response of A. Thaliana seedlings in a reduced gravity environment is enhanced by red-light photostimulation. Int. J. Mol. Sci. 22, 899 (2021).

  • Paul, A.-L., Haveman, N., Califar, B. & Ferl, R. J. Epigenomic regulators elongator complex subunit 2 and methyltransferase 1 differentially condition the spaceflight response in Arabidopsis. Front. Plant Sci. 12, 691790 (2021).

  • Manian, V., Orozco-Sandoval, J. & Diaz-Martinez, V. Detection of genes in Arabidopsis thaliana L. responding to DNA damage from radiation and other stressors in spaceflight. Genes (Basel) 12, 938 (2021).

  • Kordyum, E. & Hasenstein, K. H. Plant biology for space exploration – building on the past, preparing for the future. Life Sci. Space Res. (Amst.) 29, 1–7 (2021).

    Article 

    Google Scholar
     

  • Kruse, C. P. S. et al. Spaceflight induces novel regulatory responses in Arabidopsis seedling as revealed by combined proteomic and transcriptomic analyses. BMC Plant Biol. 20, 237 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Califar, B., Sng, N. J., Zupanska, A., Paul, A.-L. & Ferl, R. J. Root skewing-associated genes impact the spaceflight response of Arabidopsis thaliana. Front. Plant Sci. 11, 239 (2020).

  • Zabel, P. & Zeidler, C. In Handbook of Life Support Systems for Spacecraft and Extraterrestrial Habitats (ed. Furfaro, R.) (Springer Verlag, 2019).

  • Zabel, P., Bamsey, M., Schubert, D. & Tajmar, M. Review and analysis of over 40 years of space plant growth systems. Life Sci. Space Res. 10, 1–16 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Carmichael, C. & Taylor, G. R. Evaluation of crew skin flora under conditions of a full quarantine lunar-exploration mission. Br. J. Dermatol. 97, 187–196 (1977).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Carter, K. Moon rocks and moon germs – a history of NASA’s lunar receiving laboratory. Prologue 33, 234–249 (2001).


    Google Scholar
     

  • Oyama, V. I., Merek, E. L. & Silverman, M. P. A search for viable organisms in a lunar sample. Science 167, 773–775 (1970).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Walkinshaw, C. H. & Johnson, P. H. Analysis of vegetable seedlings grown in contact with Apollo 14 Lunar surface fines. Hortscience 6, 532–535 (1971).

    CAS 

    Google Scholar
     

  • Ferl, R. J. & Paul, A.-L. Lunar plant biology–a review of the Apollo era. Astrobiology 10, 261–274 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Walkinshaw, C. H. et al. Effect of lunar materials on plant tissue culture. Space Life Sci. 4, 78–89 (1973).

    CAS 
    PubMed 

    Google Scholar
     

  • Labotka, T. C., Kempa, M. J., White, C., Papike, J. J. & Laul, J. C. The lunar regolith – comparative petrology of the Apollo sites. Procceedings Lunar Planet. Sci. Conf., 11th 2, 1285–1305 (1980).


    Google Scholar
     

  • Hill, E., Mellin, M. J., Deane, B., Liu, Y. & Taylor, L. A. Apollo sample 70051 and high- and low-Ti lunar soil simulants MLS-1A and JSC-1A: Implications for future lunar exploration. J. Geophys. Res. Planets 112 (2007).

  • Marvin, U. B. et al. Relative proportions and probable sources of rock fragments in the Apollo 12 soil samples. Proc. Lunar Sci. Conf., 2nd 2, 679–699 (1971).


    Google Scholar
     

  • Morris, R. V. Surface exposure indices of lunar soils -a comparative FMR study. Proceedings of the Lunar and Planetary Science Conference, 7th, 315–335 (1976).

  • Taylor, L. A., Pieters, C. M. & Britt, D. Evaluations of lunar regolith simulants. Planet. Space Sci. 126, 1–7 (2016).

    Article 

    Google Scholar
     

  • Wamelink, G. W., Frissel, J. Y., Krijnen, W. H., Verwoert, M. R. & Goedhart, P. W. Can plants grow on Mars and the moon: a growth experiment on Mars and moon soil simulants. PLoS One 9, e103138 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papike, J. J., Simon, S. B. & Laul, J. C. The lunar regolith: Chemistry, mineralogy, and petrology. Rev. Geophys. 20, 761–826 (1982).

    CAS 
    Article 

    Google Scholar
     

  • Ma, S., Gong, Q. & Bohnert, H. J. Dissecting salt stress pathways. J. Exp. Bot. 57, 1097–1107 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. & Mittler, R. Abiotic and biotic stress combinations. N. Phytol. 203, 32–43 (2014).

    Article 

    Google Scholar
     

  • Kreps, J. A. et al. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 130, 2129–2141 (2002).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willems, P. et al. The ROS wheel: refining ROS transcriptional footprints in Arabidopsis. Plant Physiol. 171, 1722–1733 (2016).

  • Song, J., Feng, S. J., Chen, J., Zhao, W. T. & Yang, Z. M. A cadmium stress-responsive gene AtFC1 confers plant tolerance to cadmium toxicity. BMC Plant Biol. 17, 187 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marchive, C. et al. Abnormal physiological and molecular mutant phenotypes link chloroplast polynucleotide phosphorylase to the phosphorus deprivation response in Arabidopsis. Plant Physiol. 151, 905–924 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sawaki, Y. et al. STOP1 regulates multiple genes that protect arabidopsis from proton and aluminum toxicities. Plant Physiol. 150, 281–294 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schweizer, F., Bodenhausen, N., Lassueur, S., Masclaux, F. G. & Reymond, P. Differential contribution of transcription factors to arabidopsis thaliana defense against spodoptera littoralis. Front. Plant Sci. 4, 13 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang, L. et al. Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis. J. Exp. Bot. 67, 2829–2845 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grossman, J. J., Mukherjee, N. R. & Ryan, J. A. Microphysical, microchemical, and adhesive properties of lunar material III: Gas interaction with lunar material. Geochim. Cosmochim. Acta, 2259–2269 (1972).

  • Keller, L. P. & McKay, D. S. Discovery of vapor deposits in the lunar regolith. Science 261, 1305–1307 (1993).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Holmes, H. F., Fuller, E. L., Jr. & Gammage, R. B. Interaction of gases with lunar materials: Apollo 12, 14, and 16 samples. Proceedings of the Lunar Science Conference 4, 2413 (1973).

  • McKay, D. et al. in Lunar Sourcebook: A User’s Guide to the Moon, (ed Vaniman, D. T., Heiken, G. H. & French, B. M.) 285-356. (Cambridge University Press, Cambridge, 1991).

  • Lamesch, P. et al. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 40, D1202–D1210 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murashige, T. & Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15, 473–479 (1962).

    CAS 
    Article 

    Google Scholar
     

  • Meyer, C. In https://curator.jsc.nasa.gov/lunar/lsc/index.cfm (ed NASA) (2012).

  • Zarzycki, P. K. & Katzer, J. Multivariate comparison of lunar soil simulants. J. Aerosp. Eng. 32, 06019005 (2019).

    Article 

    Google Scholar
     

  • Andrews, S. FastQC: A quality control tool for high-throughput sequence data, https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 12, 323 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hulsen, T., de Vlieg, J. & Alkema, W. BioVenn – a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics 9, 488 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published.