NASA. NASA’s Lunar Exploration Program Overview. The Artimis Plan, 1–74, https://www.nasa.gov/sites/default/files/atoms/files/artemis_plan-20200921.pdf (2020).
Neal, C. R. A return to the moon is crucial. Sci. Am. 315, 8 (2016).
NASA. Artemis III Science Definition Report NASA/SP-20205009602, 1–188, https://www.nasa.gov/sites/default/files/atoms/files/artemis-iii-science-definition-report-12042020c.pdf (2020).
Wheeler, R. M. Plants for human life support in space: from Myers to Mars. Gravit. Space Biol. 23, 25–35 (2010).
Hossner, L. R., Ming, D. W., Henninger, D. L. & Allen, E. R. Lunar outpost agriculture. Endeavour 15, 79–85 (1991).
Salisbury, F. B. Lunar farming: achieving maximum yield for the exploration of space. HortScience 26, 827–833 (1991).
Ming, D. W. & Henninger, D. L. Use of lunar regolith as a substrate for plant growth. Adv. Space Res. 14, 435–443 (1994).
Whitney, G. In Lunar Base Agriculture: Soils for Plant Growth. (eds Ming, D. W. & Henninger, D. L.) (ASA, CSSA, SSSA, 1989).
Wolff, S. A., Palma, C. F., Marcelis, L., Kittang Jost, A. I. & van Delden, S. H. Testing new concepts for crop cultivation in space: effects of rooting volume and nitrogen availability. Life (Basel) 8, 45 (2018).
Zabel, P., Zeidler, C., Vrakking, V., Dorn, M. & Schubert, D. Biomass production of the EDEN ISS space greenhouse in antarctica during the 2018 experiment phase. Front. Plant Sci. 11, 656 (2020).
Barker, R., Lombardino, J., Rasmussen, K. & Gilroy, S. Test of arabidopsis space transcriptome: a discovery environment to explore multiple plant biology spaceflight experiments. Front. Plant Sci. 11, 147 (2020).
Paul, A.-L. et al. Genetic dissection of the Arabidopsis spaceflight transcriptome: are some responses dispensable for the physiological adaptation of plants to spaceflight? PLoS One 12, e0180186 (2017).
Paul, A.-L., Zupanska, A. K., Schultz, E. R. & Ferl, R. J. Organ-specific remodeling of the Arabidopsis transcriptome in response to spaceflight. BMC Plant Biol. 13, 112 (2013).
Villacampa, A. et al. From spaceflight to mars g-levels: adaptive response of A. Thaliana seedlings in a reduced gravity environment is enhanced by red-light photostimulation. Int. J. Mol. Sci. 22, 899 (2021).
Paul, A.-L., Haveman, N., Califar, B. & Ferl, R. J. Epigenomic regulators elongator complex subunit 2 and methyltransferase 1 differentially condition the spaceflight response in Arabidopsis. Front. Plant Sci. 12, 691790 (2021).
Manian, V., Orozco-Sandoval, J. & Diaz-Martinez, V. Detection of genes in Arabidopsis thaliana L. responding to DNA damage from radiation and other stressors in spaceflight. Genes (Basel) 12, 938 (2021).
Kordyum, E. & Hasenstein, K. H. Plant biology for space exploration – building on the past, preparing for the future. Life Sci. Space Res. (Amst.) 29, 1–7 (2021).
Kruse, C. P. S. et al. Spaceflight induces novel regulatory responses in Arabidopsis seedling as revealed by combined proteomic and transcriptomic analyses. BMC Plant Biol. 20, 237 (2020).
Califar, B., Sng, N. J., Zupanska, A., Paul, A.-L. & Ferl, R. J. Root skewing-associated genes impact the spaceflight response of Arabidopsis thaliana. Front. Plant Sci. 11, 239 (2020).
Zabel, P. & Zeidler, C. In Handbook of Life Support Systems for Spacecraft and Extraterrestrial Habitats (ed. Furfaro, R.) (Springer Verlag, 2019).
Zabel, P., Bamsey, M., Schubert, D. & Tajmar, M. Review and analysis of over 40 years of space plant growth systems. Life Sci. Space Res. 10, 1–16 (2016).
Carmichael, C. & Taylor, G. R. Evaluation of crew skin flora under conditions of a full quarantine lunar-exploration mission. Br. J. Dermatol. 97, 187–196 (1977).
Carter, K. Moon rocks and moon germs – a history of NASA’s lunar receiving laboratory. Prologue 33, 234–249 (2001).
Oyama, V. I., Merek, E. L. & Silverman, M. P. A search for viable organisms in a lunar sample. Science 167, 773–775 (1970).
Walkinshaw, C. H. & Johnson, P. H. Analysis of vegetable seedlings grown in contact with Apollo 14 Lunar surface fines. Hortscience 6, 532–535 (1971).
Ferl, R. J. & Paul, A.-L. Lunar plant biology–a review of the Apollo era. Astrobiology 10, 261–274 (2010).
Walkinshaw, C. H. et al. Effect of lunar materials on plant tissue culture. Space Life Sci. 4, 78–89 (1973).
Labotka, T. C., Kempa, M. J., White, C., Papike, J. J. & Laul, J. C. The lunar regolith – comparative petrology of the Apollo sites. Procceedings Lunar Planet. Sci. Conf., 11th 2, 1285–1305 (1980).
Hill, E., Mellin, M. J., Deane, B., Liu, Y. & Taylor, L. A. Apollo sample 70051 and high- and low-Ti lunar soil simulants MLS-1A and JSC-1A: Implications for future lunar exploration. J. Geophys. Res. Planets 112 (2007).
Marvin, U. B. et al. Relative proportions and probable sources of rock fragments in the Apollo 12 soil samples. Proc. Lunar Sci. Conf., 2nd 2, 679–699 (1971).
Morris, R. V. Surface exposure indices of lunar soils -a comparative FMR study. Proceedings of the Lunar and Planetary Science Conference, 7th, 315–335 (1976).
Taylor, L. A., Pieters, C. M. & Britt, D. Evaluations of lunar regolith simulants. Planet. Space Sci. 126, 1–7 (2016).
Wamelink, G. W., Frissel, J. Y., Krijnen, W. H., Verwoert, M. R. & Goedhart, P. W. Can plants grow on Mars and the moon: a growth experiment on Mars and moon soil simulants. PLoS One 9, e103138 (2014).
Papike, J. J., Simon, S. B. & Laul, J. C. The lunar regolith: Chemistry, mineralogy, and petrology. Rev. Geophys. 20, 761–826 (1982).
Ma, S., Gong, Q. & Bohnert, H. J. Dissecting salt stress pathways. J. Exp. Bot. 57, 1097–1107 (2006).
Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. & Mittler, R. Abiotic and biotic stress combinations. N. Phytol. 203, 32–43 (2014).
Kreps, J. A. et al. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 130, 2129–2141 (2002).
Willems, P. et al. The ROS wheel: refining ROS transcriptional footprints in Arabidopsis. Plant Physiol. 171, 1722–1733 (2016).
Song, J., Feng, S. J., Chen, J., Zhao, W. T. & Yang, Z. M. A cadmium stress-responsive gene AtFC1 confers plant tolerance to cadmium toxicity. BMC Plant Biol. 17, 187 (2017).
Marchive, C. et al. Abnormal physiological and molecular mutant phenotypes link chloroplast polynucleotide phosphorylase to the phosphorus deprivation response in Arabidopsis. Plant Physiol. 151, 905–924 (2009).
Sawaki, Y. et al. STOP1 regulates multiple genes that protect arabidopsis from proton and aluminum toxicities. Plant Physiol. 150, 281–294 (2009).
Schweizer, F., Bodenhausen, N., Lassueur, S., Masclaux, F. G. & Reymond, P. Differential contribution of transcription factors to arabidopsis thaliana defense against spodoptera littoralis. Front. Plant Sci. 4, 13 (2013).
Fang, L. et al. Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis. J. Exp. Bot. 67, 2829–2845 (2016).
Grossman, J. J., Mukherjee, N. R. & Ryan, J. A. Microphysical, microchemical, and adhesive properties of lunar material III: Gas interaction with lunar material. Geochim. Cosmochim. Acta, 2259–2269 (1972).
Keller, L. P. & McKay, D. S. Discovery of vapor deposits in the lunar regolith. Science 261, 1305–1307 (1993).
Holmes, H. F., Fuller, E. L., Jr. & Gammage, R. B. Interaction of gases with lunar materials: Apollo 12, 14, and 16 samples. Proceedings of the Lunar Science Conference 4, 2413 (1973).
McKay, D. et al. in Lunar Sourcebook: A User’s Guide to the Moon, (ed Vaniman, D. T., Heiken, G. H. & French, B. M.) 285-356. (Cambridge University Press, Cambridge, 1991).
Lamesch, P. et al. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 40, D1202–D1210 (2011).
Murashige, T. & Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15, 473–479 (1962).
Meyer, C. In https://curator.jsc.nasa.gov/lunar/lsc/index.cfm (ed NASA) (2012).
Zarzycki, P. K. & Katzer, J. Multivariate comparison of lunar soil simulants. J. Aerosp. Eng. 32, 06019005 (2019).
Andrews, S. FastQC: A quality control tool for high-throughput sequence data, https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 12, 323 (2011).
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
Hulsen, T., de Vlieg, J. & Alkema, W. BioVenn – a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics 9, 488 (2008).